1 Induction

1.1 Concepts

1. Mathematical induction allows us to prove a statement for all n. Each induction problem will be of the form: "Let S_{n} be the statement that (something) is true for any integers $n \geq 1$ " where (something) is some mathematical equality. To solve them, there are three steps:
2. Base Case: Show that the statement is true for the smallest value $n=1$.
3. Inductive Step: State that you are assuming the inductive hypothesis (S_{n} is true for some $n \geq 1$). Then, prove that S_{n+1} is true using S_{n}.
4. Conclusion: State that by MMI, we conclude that S_{n} is true for all $n \geq 1$.

All steps must be written in order to get full credit.

1.2 Examples

2. Prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \geq 1$.

Solution: First we show the base case of $n=1$. In that case, we have that $1=\frac{1(2)}{2}$ as required. Now assume the inductive hypothesis $S_{n}: 1+2+\cdots+n=\frac{n(n+1)}{2}$ for some $n \geq 1$. We wish to prove that $S_{n+1}: 1+2+\cdots+(n+1)=\frac{(n+1)(n+2)}{2}$. By the inductive hypothesis, we have that
$(1+2+\cdots+n)+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{n(n+1)+2(n+1)}{2}=\frac{(n+2)(n+1)}{2}$.
Therefore, by the principle of mathematical induction, we have proven the result for all $n \geq 1$.
3. Prove that $5^{2 n+1}+2^{2 n+1}$ is divisible by 7 for all $n \geq 0$.

Solution: First we show the base case. We have that $5^{2 \cdot 0+1}+2^{2 \cdot 0+1}=5+2=7$, which is divisible by 7 . Now assume the inductive hypothesis that $5^{2 n+1}+2^{2 n+1}$ is true for some $n \geq 0$. Then $5^{2(n+1)+1}+2^{2(n+1)+1}=5^{2 n+1+2}+2^{2 n+1+2}=25 \cdot 5^{2 n+1}+4 \cdot 2^{2 n+1}=$ $21 \cdot 5^{2 n+1}+4\left(5^{2 n+1}+2^{2 n+1}\right)$. The former is divisible by 7 and so is the latter which means the sum is. Thus, by mathematical induction, the result holds for all $n \geq 0$.

1.3 Problems

4. TRUE False If we want to prove S_{n} for all $n \geq 10$, then our base case would be $n=10$.
5. True FALSE When using induction, if we can show that if S_{100} is true, then S_{101} is true, then S_{n} must be true for all n.

Solution: When doing the inductive step, we must use a general n, not a specific case (although a specific case when help you find a pattern)
6. TRUE False Instead of assuming S_{n} is true and showing that S_{n+1} is true, we can instead assume that S_{n-1} is true and prove that S_{n} is true.

Solution: This is effectively the same thing in showing that if one day it rains, then it rains the next.
7. Prove that for all $n \geq 1$

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1} .
$$

Solution: This is true for the base case $n=1$. Assuming the inductive hypothesis for some $n \geq 1$, we have that

$$
\begin{aligned}
\left(\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\cdots+\frac{1}{n(n+1)}\right)+\frac{1}{(n+1)(n+2)} & \stackrel{I H}{=} \frac{n}{n+1}+\frac{1}{(n+1)(n+2)} \\
& =\frac{n^{2}+2 n+1}{(n+1)(n+2)}=\frac{n+1}{n+2} .
\end{aligned}
$$

Therefore, by mathematical induction, the result is true for all $n \geq 1$.
8. Prove that for all $n \geq 1$

$$
1+4+7+\cdots+(3 n-2)=\frac{n(3 n-1)}{2}
$$

Solution: This is true for the base case and assuming true for some $n \geq 1$, we have that

$$
(1+4+\cdots+(3 n-2))+(3(n+1)-2) \stackrel{I H}{=} \frac{n(3 n-1)}{2}+(3 n+1)=\frac{(n+1)(3 n+2)}{2} .
$$

Therefore, by mathematical induction, we have proven the result for all $n \geq 1$.
9. Prove that

$$
1+3+9+\cdots+3^{n}=\frac{3^{n+1}-1}{2}
$$

for all $n \geq 1$.

Solution: The base case is true since $1=\frac{3-1}{2}$. Then assuming the inductive hypothesis for some $n \geq 1$, we see that

$$
1+3+\cdots+3^{n}+3^{n+1}=\frac{3^{n+1}-1}{2}+3^{n+1}=\frac{3 \cdot 3^{n+1}-1}{2}=\frac{3^{n+2}-1}{2}
$$

Thus, by mathematical induction, the result is shown for all $n \geq 1$.
10. Prove that $6^{n}-1$ is divisible by 5 for all $n \geq 1$.

Solution: This is true for the base case $n=1$. Assuming true for some $n \geq 1$, we have that $6^{n+1}-1=6 \cdot 6^{n}-1=5 \cdot 6^{n}+\left(6^{n}-1\right)$. The former is divisible by 5 and the latter is by the inductive hypothesis, therefore the whole thing is divisible by 5 . Thus, by mathematical induction, the result is shown for all $n \geq 1$.
11. Prove that $n^{3}+2 n$ is divisible by 3 for all integers $n \geq 0$.

Solution: We show that it is true for the base case $n=0$. This is true because 0 is divisible by 3 . Now we assume the inductive hypothesis that $n^{3}+2 n$ is divisible by 3. Now, we have that

$$
(n+1)^{3}+2(n+1)=n^{3}+3 n^{2}+3 n+1+2 n+1=\left(n^{3}+2 n\right)+3\left(n^{2}+n+1\right)
$$

which is divisible by 3 by the inductive hypothesis. Therefore, we have shown the result by mathematical induction.
12. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence defined as $a_{1}=1$ and $a_{n+1}=\sqrt{a_{n}+2}$. Prove that $a_{n} \leq 2$ for all $n \geq 1$.

Solution: Base case: for $n=1, a_{1}=1 \leq 2$.
Inductive step: Suppose that $a_{n} \leq 2$ for some $n \geq 1$. Then

$$
a_{n+1}=\sqrt{a_{n}+2} \leq \sqrt{2+2}=2
$$

so it is also true for $n+1$. Hence it is true for all n by mathematical induction.
13. Prove that $1!\cdot 1+2!\cdot 2+3!\cdot 3+\cdots+n!\cdot n=(n+1)$! -1 . for all $n \geq 1$.

Solution: The result is true for $n=1$ and assuming true for general n, we have that
$1!\cdot 1+\cdots+n!\cdot n+(n+1)!\cdot(n+1)=(n+1)!-1+(n+1)!(n+1)=(n+1)!(n+2)-1=(n+2)!-1$.
Thus by mathematical induction, the result is proven.
14. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence defined as $a_{1}=1, a_{2}=5$ and $a_{n+2}=5 a_{n+1}-6 a_{n}$. Prove that $a_{n}=3^{n}-2^{n}$ for all $n \geq 1$.

Solution: Basis case: for $n=1, a_{1}=1=3^{1}-2^{1}$ and for $n=2, a_{2}=5=3^{2}-2^{2}$.
Inductive step: suppose that the statement holds for n and $n+1$. For $n+2$, we have

$$
\begin{aligned}
a_{n+2} & =5 a_{n+1}-6 a_{n}=5\left(3^{n+1}-2^{n+1}\right)-6\left(3^{n}-2^{n}\right) \\
& =15 \cdot 3^{n}-10 \cdot 2^{n}-6 \cdot 3^{n}+6 \cdot 2^{n}=9 \cdot 3^{n}-4 \cdot 2^{n} \\
& =3^{n+2}-2^{n+2}
\end{aligned}
$$

so it is also true for $n+2$. Hence it is true for all $n \geq 1$ by mathematical induction.

